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ABSTRACT 
This paper deals with the non- Linear singular system from fluid dynamics. The results (approximate solutions) 

obtained using single-term Haar wavelet series and Leapfrog methods are compared with the exact solutions of 

the non-Linear singular system from fluid dynamics. It is found that the solution obtained using Leapfrog method 

is closer to the original solution of the non-Linear singular system from fluid dynamics. The high accuracy and 

the wide applicability of Leapfrog method approach will be demonstrated with numerical examples.  

 

KEYWORDS: non- Linear singular system, Haar wavelet series, Leapfrog methods and fluid dynamics. 

INTRODUCTION 
A general numerical procedure for their solution has not previously existed. Hence it is important to understand 

the structure of such systems and develop efficient methods for solving them. Conventional methods, such as 

Euler, Taylor series and Adams-Moultan methods, are restricted to a very small step size in order to obtain a stable 

solution, which naturally require much computer time. Many new methods have been developed to overcome this 

step-size constraint imposed by numerical stability, and these are reviewed by Butcher [23, 24] and Murugesan et 

al. [97, 101]. Recently, Balachandran and Murugesan [14] obtained the numerical solution of   a singular non-

linear system from fluid dynamics. Murugesan et al. [101] analysis of non-Linear singular system from fluid 

dynamics using extended Runge-Kutta methods. S. Sekar et al. [149] analysis the same non-Linear singular system 

from uid dynamics using single-term Haar wavelet series method. The point to be noted is that the singular non-

linear systems are much more did cult to solve than the linear singular systems. Therefore, many authors have 

tried various transform methods to overcome these difficulties. In this chapter, Leapfrog method is introduced to 

solve these non-Linear singular systems from fluid dynamics with more accuracy. 

 

REPRESENTATION OF EQUATIONS OF OWN AS A NON- LINEAR SYSTEM 
The simplified model consists of two connected sub channels filled with a steadily flowing fluid. Control volumes 

and flow variables for the system are shown in Figure 8.1. Here, 𝑚𝑖, represents the axial mass ow rate in sub 

channel 𝑖 and w represents the cross- flow rate per unit length, assumed positive if the flow is from sub channel-

1 to sub channel- 2. 

 

 
 

Continuity: 
𝑑𝑚𝑖

𝑑𝑥
  =  −𝑤                                      Axial momentum:

𝑑

𝑑𝑥
(𝑚1𝑢1) + 𝑤[𝐻(𝑤)𝑢1 + ℎ(−𝑤)𝑢2] =
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−𝐹1 − 𝐴1
𝑑𝑝1

𝑑𝑥
 

Energy : 
𝑑

𝑑𝑥
(𝑚1ℎ1) = 𝑞1 − 𝑤[𝐻(𝑤)ℎ1 + 𝐻(−𝑤)ℎ2] 

 

Analogous equations for sub channel 2 can be obtained from these by substituting 𝑤 for 𝑤 and by interchanging 

subscripts 1 and 2. In this equation set, H is the Heavy side unit step function. 𝐹 represents pressure loss per unit 

length due to friction, A is the cross-sectional area, 𝑞 represents the heat energy added per unit length, and the 

variables, 𝑢, 𝑝 and ℎ stand for particle velocity, pressure and enthalpy respectively. In analogy with the pressure 

drop due to friction in a long pipe, a lateral momentum balance may be taken as 𝑝1 − 𝑝2 =  𝐶𝑤[𝑊], where 𝐶 is 

a cross- flow friction factor. To simplify the above equation, the following assumptions are made. Cross- sectional 

area is constant; the coolant is incompressible; there is no enthalpy change; and the frictional pressure loss function 

is of the form 1 =  𝑚1𝑢1𝐹 , where 𝐹 is a constant. With these assumptions, the equations may be combined and 

written in the following form: 
𝑑𝑚1

𝑑𝑥
= −𝑤 

𝑑

𝑑𝑥
(𝑤|𝑤|) = 𝜖−1{

1 − 2𝑚1

2
+ 2𝑤[1 − 𝐻(𝑤)𝑚1 + 𝐻(−𝑤)(𝑚1 − 1)]} 

 

To make the above system into the symmetric form, take 

𝑥 = 𝑚1 −
1

2
, 𝑦 =

𝑤

2
, 𝑡 = 𝑥 

Hence we get 
𝑑𝑥

𝑑𝑡
= −2𝑦 

 

Replacing 𝑥 by 𝑥1 and y by 𝑥2 , we have 

𝑥̇1 = −2𝑥2 
𝑑

𝑑𝑡
(𝑥2|𝑥2|) = (4𝜖)−1[𝑥1 + 2(𝑥2 − 2𝑥1|𝑥2|)] 

 

An analysis is carried out in four different ways depending upon the values of 𝑥2 and  

𝜖 as given below :  

 

I. 𝑥2  >  0 𝑎𝑛𝑑  𝜖 ≠  0  
 

II. 𝑥2  <  0 𝑎𝑛𝑑  𝜖 ≠  0  
 

III. 𝑥2  >  0 𝑎𝑛𝑑  𝜖 =  0  
 

(i) 𝑥2 <  0 𝑎𝑛𝑑  𝜖 =  0  
 

In the first two cases the parameter has been varied from  100, 101, 102, … 107 and in the last two cases, has been 

set to zero. 

Case (i) 

 

When 𝑥2  >  0 𝑎𝑛𝑑  𝜖 ≠  0  In this case equation becomes 

𝑥̇1 = −2𝑥2 

8𝜖𝑥2𝑥̇2 = −𝑥1 + 2𝑥2 − 4𝑥1𝑥2 
The above two equations can be considered as a system of equations of the form 

[
1 0
0 8𝜖𝑥2

] [
𝑥̇1

𝑥̇2
] = [

0 −2
−1 2

] [
𝑥1

𝑥2
] + [

0
−4𝑥1𝑥2

] 

 

This is of the form (Evans et al. [48]) 

 

𝐾(𝑥(𝑡))𝑥̇(𝑡)  =  𝐴𝑥(𝑡)  +  𝑓(𝑥(𝑡)) 
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The above first order non-linear system, representing the highly simplified two channel model of a nuclear reactor 

core from uid dynamics, when 𝑥2  >  0 𝑎𝑛𝑑  𝜖 ≠  0 , can be converted into a second order equation in order to 

reduce the number of equations, as well as the number of unknowns, and is given as 

𝑥̈1 =
1

2𝜖
[
−𝑥1

𝑥̇1

− 1 + 2𝑥1] 

 

Where 

𝑥2 =
−𝑥̇1

2
 

Hence the above equation is of the form 

 

𝑥̈1 = ∅(𝜖)𝑓(𝑡, 𝑥1, 𝑥̇1) 
Where 

∅(𝜖) =
1

2𝜖
 

Case (ii) 

 

     When 𝑥2  <  0 𝑎𝑛𝑑  𝜖 ≠  0  
 

In this case equation becomes 

𝑥̇1 = 2𝑥2 

8𝜖𝑥2𝑥̇2 = −𝑥1 + 2𝑥2 − 4𝑥1𝑥2 
 

The above two equations can be considered as a system of equations of the form 

 

[
1 0
0 8𝜖𝑥2

] [
𝑥̇1

𝑥̇2
] = [

0 2
1 2

] [
𝑥1

𝑥2
] + [

0
4𝑥1𝑥2

] 

 

This is of the form (Evans et al. [48]) 

𝐾(𝑥(𝑡))𝑥̇(𝑡)  =  𝐴𝑥(𝑡)  +  𝑓(𝑥(𝑡)) 
The above first order non-linear system, representing the highly simplified two channel model of a nuclear reactor 

core from uid dynamics, when 𝑥2  <  0 𝑎𝑛𝑑  𝜖 ≠  0  can be converted into a second order equation in order to 

reduce the number of equations, as well as the number of unknowns, and is given as 

𝑥̈1 =
1

2𝜖
[
𝑥1

𝑥̇1

+ 1 + 2𝑥1] 

Where 

𝑥2 =
𝑥̇1

2
 

Hence the above equation is of the form 

 

𝑥̈1 = ∅(𝜖)𝑓(𝑡, 𝑥1, 𝑥̇1) 

 

Where 

∅(𝜖) =
1

2𝜖
 

Case (iii) 

 

When 𝑥2  >  0 𝑎𝑛𝑑  𝜖 =  0   In this case equation becomes 

𝑥̇1 = −2𝑥2 

0 = −𝑥1 + 2𝑥2 − 4𝑥1𝑥2 

The above two equations can be considered as a system of equations of the form 

[
1 0
0 0

] [
𝑥̇1

𝑥̇2
] = [

0 −2
−1 2

] [
𝑥1

𝑥2
] + [

0
−4𝑥1𝑥2

] 

 

The above system is a singular non-linear system and it is of the form 

𝐾(𝑥(𝑡))𝑥̇(𝑡)  =  𝐴𝑥(𝑡)  +  𝑓(𝑥(𝑡)) 
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This system can be written as 

𝑥̈1 =
𝑥1

2𝑥1 − 1
 

Where 

𝑥2 =
−𝑥̇1

2
 

The above equations has been converted into a second order equations as  

𝑥̈1 =
−𝑥̇1

(2𝑥1 − 1)2
 

Where 

𝑥2 =
−𝑥̇1

2
 

Hence the above equation is of the form  

𝑥̈1 = 𝑓(𝑡, 𝑥1, 𝑥̇1) 

Case (IV) 

 

When 𝑥2 <  0 𝑎𝑛𝑑  𝜖 =  0  
 

In this case equation becomes 

𝑥̇1 = 2𝑥2 

0 = −𝑥1 − 2𝑥2 − 4𝑥1𝑥2 
 

The above two equations can be considered as a system of equations of the form 

 

[
1 0
0 0

] [
𝑥̇1

𝑥̇2
] = [

0 2
−1 −2

] [
𝑥1

𝑥2
] + [

0
−4𝑥1𝑥2

] 

 

The above system is a singular non-linear system and it is of the form 

 

𝐾(𝑥(𝑡))𝑥̇(𝑡)  =  𝐴𝑥(𝑡)  +  𝑓(𝑥(𝑡)) 

This system can be written as 

𝑥̈1 =
𝑥1

2𝑥1 + 1
 

Where 

𝑥2 =
𝑥̇1

2
 

The above equations has been converted into a second order equations as 

𝑥̈1 =
−𝑥̇1

(2𝑥1 + 1)2
 

Where 

𝑥2 =
−𝑥̇1

2
 

Hence the above equation is of the form 

𝑥̈1 = 𝑓(𝑡, 𝑥1, 𝑥̇1) 

 

 

LEAPFROG METHOD FOR NON-LINEAR SINGULAR SYSTEM FROM FLUID 

DYNAMICS 
In this section we modified the method to solve the non-Linear singular system from fluid dynamics, as follows; 

Euler’s Method approximates the derivative in the form of 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, 𝑦 ∈ 𝑅𝑑 by a finite difference 

quotient𝑦′ ≈
𝑦(𝑡+ℎ)−𝑦(𝑡)

ℎ
.. We shall usually discretize the independent variable in equal increments: 

𝑡𝑛+1 = 𝑡𝑛 + ℎ, 𝑛 = 0,1,2, … 𝑡0                                    
 

Henceforth we focus on the scalar case, 𝑁 =  1. Rearranging the difference quotient gives us the corresponding 

approximate values of the dependent variable: 
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𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛), 𝑛 = 0,1,2, … 𝑡0                          
To obtain the leapfrog method, we discrete tn as in 𝑡𝑛+1 = 𝑡𝑛 + ℎ, 𝑛 = 0,1,2, … 𝑡0 but we double the time interval, 

h, and write the midpoint approximation 

𝑦(𝑡 + ℎ) − 𝑦(𝑡) ≈ ℎ𝑦′ (𝑡 +
ℎ

2
)                                          

 

in the form 

 

𝑦′(𝑡+ℎ) ≈
𝑦(𝑡 + 2ℎ) − 𝑦(𝑡)

ℎ
                                                

 

and then discrete it as follows: 

 

𝑦𝑛+1 = 𝑦𝑛−1 + 2ℎ𝑓(𝑡𝑛, 𝑦𝑛), 𝑛 = 0,1,2, … 𝑡0                     
 

The leapfrog method is a linear m = 2-step method, with a0 = 0; a1 = 1; b 1 = 1; b0 = 2 and b1 = 0. It uses slopes 

evaluated at odd values of n to advance the values at points at even values of n, and vice versa, reminiscent of the 

childrens game of the same name. For the same reason, there are multiple solutions of the leapfrog method with 

the same initial value y = y0.  This situation suggests a potential instability present in multistep methods, which 

must be addressed when we analyze them two values, y0 and y1, are required to initialize solutions of 𝑦𝑛+1 = 𝑦𝑛 +
ℎ𝑓(𝑡𝑛, 𝑦𝑛), 𝑛 = 0,1,2, … 𝑡0 uniquely, but the analytical problem 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0 , 𝑦 ∈ 𝑅𝑑 only provides 

one. Also for this reason, one-step methods are used to initialize multistep methods. In order to illustrate the 

possible practical use of this method we apply the above technique to the following examples of non-Linear 

singular system from fluid dynamics. 

 

DISCRETE SOLUTIONS FOR NON-LINEAR SINGULAR SYSTEM FROM FLUID 

DYNAMICS 
It is very difficult to obtain the exact solution of this non-linear equation. Hence it has been analyzed by the 

following numerical methods by the way of determining the discrete solutions at different time intervals: 

I. Single-term Haar wavelet series.  

II. Leapfrog method. 

 

The above method has been applied to determine the approximate solutions for all four cases of the nuclear reactor 

core problem discussed in section The discrete solutions of a two channel model of a nuclear reactor core problem 

for the cases (i) when x2 > 0 and  6= 0 (ii) when x2 < 0 and  6= 0 [i.e., Eq.(8.6) and Eq. (8.8)] have been determined 

using the single-term Haar wavelet series method by varying the parameter  from 100 to 107 with x1(0) = 1; x1(0) 

= 1 and the results are given in the Tables 1 - 4 and the discrete solution for the cases (iii) when x2 > 0 and  = 0 

(iv) when x2 < 0 and  = 0 [i.e., singular systems] have been determined using single-term Haar wavelet series 

method with x1(0) = 1; x1(0) = 1 and the results are given in the Tables 1 – 2. 

 

CONCLUSIONS  
The nuclear reactor core problem has been studied under four different cases (specified section Tables) by way of 

determining the discrete solutions for different time t using the single-term Haar wavelet series method and 

Leapfrog method. In for the same problem, the approximate solution was determined using Leapfrog method and 

it was mentioned that the single-term Haar wavelet series method failed to obtained approximate solutions when 

the parameter 103. But in this chapter 6, it has been established that the single-term Haar wavelet series method 

are adequate enough to determine approximate solutions for all values of (i.e.,  = 0,100,101; …, 107). 

 

In cases (iii) and (iv), when = 0, the system reduces to a singular system for both x2 > 0 and x2 < 0. It is observed 

that, for a singular system, the discrete solutions obtained by the single-term Haar wavelet series method and 

Leapfrog method are found to be similar (refer Tables 1 - 12). However, for the cases (i) when x2 > 0 and 6= 0 

(ii) when x2 < 0 and 6= 0, it has been noted that the discrete solutions, obtained by employing the discussed the 

single-term Haar wavelet series method and Leapfrog method, coincide with each other (refer Tables 1 -12). When 

106, the discrete solution obtained for the nuclear reactor core problem converges and remains stable. 

 

Hence, by comparing the results obtained for the nuclear reactor core problem discussed under four cases; the 

Leapfrog method is more suitable for studying the nuclear reactor core problem. 
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Table 1: Solutions of equation Case (i) and STHWS method for 𝒙𝟏 

t =100 =101 =102 =103 

0 1.0000 1.0000 1.0000 1.0000 

0.5 0.5000 1.5011 1.5001 1.5000 

1 2.1035 2.0085 2.0008 2.0001 

1.5 2.9072 2.5293 2.5028 2.5003 

2 4.1356 3.0711 3.0067 3.0007 

2.5 6.1192 3.6427 3.5131 3.5013 

3 9.3819 4.2544 4.0228 4.0023 

3.5 14.7670 4.9183 4.5363 4.5363 

4 23.6559 5.6486 5.0545 5.0545 

4.5 38.3217 6.4619 5.5779 5.5779 

5 62.5103 7.3777 6.1074 6.1074 

t =104 =105 =106 =107 

0 1 1 1 1 

0.5 1.5 1.5 1.5 1.5 

1 2.00001 2 2 2 

1.5 2.50003 2.5 2.5 2.5 

2 3.00007 3 3 3 

2.5 3.50013 3.50001 3.5 3.5 

3 4.00022 4.00002 4 4 

3.5 4.50036 4.50003 4.50001 4.50001 

4 5.00053 5.00004 5.00002 5.00002 

4.5 5.50076 5.50006 5.50003 5.50003 

5 6.00104 6.0001 6.00004 6.00004 

 

 

t = 100 = 101 = 102 = 103 

0 1 1 1 1 

0.5 0.5 1.50105 1.5001 1.5 

1 2.103502 2.00852 2.00084 2.00008 

1.5 2.907169 2.5293 2.50282 2.50028 

2 4.13519 3.07107 3.00671 3.00067 

2.5 6.119246 3.64267 3.51314 3.5013 

3 9.381907 4.25438 4.02279 4.00225 

3.5 14.767 4.91829 4.53632 4.53632 

4 23.65592 5.6486 5.05446 5.05446 

4.5 38.32171 6.46194 5.57791 5.57791 

5 62.5103 7.37769 6.10744 6.10744 

 

 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.5 1.5 1.5 1.5 

1 2.00001 2 2 2 

1.5 2.50003 2.5 2.5 2.5 

2 3.00007 3 3 3 

2.5 3.50013 3.50001 3.5 3.5 

3 4.00022 4.00002 4 4 

3.5 4.50036 4.50003 4.50001 4.50001 

4 5.00053 5.00004 5.00002 5.00002 

4.5 5.50076 5.50006 5.50003 5.50003 
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5 6.00104 6.0001 6.00004 6.00004 

0 1 1 1 1 

 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.5 1.5 1.5 1.5 

1 2.00001 2 2 2 

1.5 2.50003 2.5 2.5 2.5 

2 3.00007 3 3 3 

2.5 3.50013 3.50001 3.5 3.5 

3 4.00022 4.00002 4 4 

3.5 4.50036 4.50003 4.50001 4.50001 

4 5.00053 5.00004 5.00002 5.00002 

4.5 5.50076 5.50006 5.50003 5.50003 

5 6.00104 6.0001 6.00004 6.00004 

 

Table 2: Solutions of equation Case (i) and STHWS method for 𝒙𝟐 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 -0.5354 -0.5032 -0.5003 -0.5 

1 -0.6702 -0.5129 -0.5013 -0.5001 

1.5 -0.9721 -0.5299 -0.5028 -0.5003 

2 -1.5381 -0.5551 -0.5051 -0.5005 

2.5 -2.515 -0.5898 -0.5079 -0.5008 

3 -4.1475 -0.6356 -0.5115 -0.5011 

3.5 -6.8473 -0.6946 -0.5157 -0.5015 

4 -11.3 -0.7688 -0.5207 -0.502 

4.5 -18.64 -0.8611 -0.5264 -0.5025 

5 -30.741 -0.9742 -0.5328 -0.5031 

 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 -0.5 -0.5 -0.5 -0.5 

1 -0.5 -0.5 -0.5 -0.5 

1.5 -0.5 -0.5 -0.5 -0.5 

2 -0.5001 -0.5001 -0.5 -0.5 

2.5 -0.5001 -0.5 -0.5 -0.5 

3 -0.5001 -0.5 -0.5 -0.5 

3.5 -0.5002 -0.5 -0.5 -0.5 

4 -0.5002 -0.5 -0.5 -0.5 

4.5 -0.5003 -0.5 -0.5 -0.5 

5 -0.5003 -0.5 -0.5 -0.5 

 

Table 3: Solutions of equation Case (ii) and STHWS method for 𝒙𝟏 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.77025 1.52794 1.50281 1.50028 

1 3.22725 2.12374 2.01248 2.00125 

1.5 5.74391 2.80613 2.53089 2.50309 

2 9.96764 3.59529 3.05989 3.0056 

2.5 16.9811 4.51351 3.60137 3.51015 

3 28.578 5.58583 4.15721 4.01575 

3.5 47.7207 6.84079 4.7293 4.52296 

4 79.297 8.3112 5.31956 5.03199 

4.5 131.368 10.0351 5.92991 5.54302 

5 217.224 12.0566 6.56227 6.05624 
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Table 4: Solutions of equation Case (ii) and 

STHWS method for 𝒙𝟐 

 

 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.06923 0.55884 0.50593 0.50059 

1 1.90565 0.633359 0.513728 0.501375 

1.5 3.23294 0.73226 0.52339 0.50234 

2 5.39053 0.84977 0.53493 0.5035 

2.5 8.92805 0.99083 0.54834 0.50484 

3 14.7473 1.15855 0.56365 0.50637 

3.5 24.3327 1.35681 0.58086 0.50809 

4 40.1302 1.59033 0.59998 0.51 

4.5 66.1718 1.86475 0.62104 0.51209 

5 109.104 2.18678 0.64407 0.51437 

 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 0.50006 0.50001 0.5 0.5 

1 0.50014 0.50001 0.5 0.5 

1.5 0.50023 0.50002 0.5 0.5 

2 0.50035 0.50004 0.5 0.5 

2.5 0.50048 0.50005 0.5 0.5 

3 0.50064 0.50006 0.5 0.5 

3.5 0.50081 0.50008 0.50001 0.5 

4 0.501 0.5001 0.50001 0.5 

4.5 0.50121 0.50012 0.50001 0.5 

5 0.50144 0.50014 0.50001 0.5 

 

Table 8.5: Solutions of equation Case (iii) and STHWS method for 𝒙𝟏 and 𝒙𝟐 

t = 104 = 105 

0 1 1 

0.5 1.42821 -0.3847 

1 1.791537 -0.34678 

1.5 2.127465 -0.32681 

2 2.447541 -0.31418 

2.5 2.757087 -0.30538 

3 3.059052 -0.29885 

3.5 3.355264 -0.29378 

4 3.646944 -0.2872 

4.5 3.934948 -0.28639 

5 4.21991 -0.2836 

 

Table 8.6: Solutions of equation Case (iv) and STHWS method for 𝒙𝟏 and 𝒙𝟐 

t X1 X2 

0 1 1 

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.50003 1.5 1.5 1.5 

1 2.00013 2.00001 2 2 

1.5 2.50031 2.50003 2.5 2.5 

2 3.0006 3.00006 3 3 

2.5 3.50102 3.5001 3.5 3.5 

3 4.00158 4.00016 4 4 

3.5 4.5023 4.50023 4.50001 4.50001 

4 5.0032 5.00032 5.00002 5.00002 

4.5 5.5043 5.50004 5.50003 5.50003 

5 6.00563 6.00056 6.00004 6.00004 
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0.5 1.488729 0.479521 

1 1.961758 0.467443 

1.5 2.424938 0.459403 

2 2.881311 0.453635 

2.5 3.332675 0.449281 

3 3.780187 0.449281 

3.5 4.224638 0.443124 

4 4.666598 0.44086 

4.5 5.106484 0.438962 

5 5.544618 0.437346 

 

Table 8.7: Solutions of equation Case (i) and Leapfrog method for x1 

t = 100 = 101 = 102 = 103 

0 1 1 1 1 

0.5 0.500001 1.50105 1.50019 1.50009 

1 2.103502 2.00852 2.00084 2.00008 

1.5 2.907169 2.52939 2.50282 2.50028 

2 4.135199 3.07107 3.00671 3.00067 

2.5 6.119246 3.64267 3.51314 3.5013 

3 9.381907 4.25438 4.02279 4.00225 

3.5 14.76799 4.91829 4.53632 4.53632 

4 23.65592 5.64869 5.05446 5.05446 

4.5 38.32171 6.46194 5.57791 5.57791 

5 62.51039 7.37769 6.10744 6.10744 

     

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.50009 1.5 1.5 1.5 

1 2.00001 2 2 2 

1.5 2.50003 2.5 2.5 2.5 

2 3.00007 3 3 3 

2.5 3.50013 3.50001 3.5 3.5 

3 4.00022 4.00002 4 4 

3.5 4.50036 4.50003 4.50001 4.50001 

4 

 

5.00053 5.00053 5.00053 5.00053 

4.5 5.50076 5.50006 5.50003 5.50003 

5 6.00104 6.00019 6.00004 6.00004 

 

Table 8.8: Solutions of equation Case (i) and Leapfrog method for x2 

t = 100 = 101 = 102 = 103 

0 1 1 1 1 

0.5 -0.535368 -0.50316 -0.50031 -0.500003 

1 -0.670201 -0.51292 -0.50125 -0.500125 

1.5 -0.972082 -0.52991 -0.50283 -0.500281 

2 -1.538084 -0.55519 -0.50505 -0.500501 

2.5 -2.515008 -0.58989 -0.50793 -0.500782 

3 -4.147465 -0.63563 -0.51148 -0.501127 

3.5 -6.847252 -0.69456 -0.51572 -0.501535 
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4 -11.30009 -0.76884 -0.52067 -0.502007 

4.5 -18.64044 -0.86107 -0.52636 -0.502542 

5 -30.74066 -0.97417 -0.53282 -0.503141 

     

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 -0.50003 -0.5 -0.5 -0.5 

1 -0.50001 -0.5 -0.5 -0.5 

1.5 -0.50003 -0.5 -0.5 -0.5 

2 -0.50005 -0.50005 -0.5 -0.5 

2.5 -0.50008 -0.50001 -0.5 -0.5 

3 -0.50011 -0.50001 -0.5 -0.5 

3.5 -0.50015 -0.50001 -0.5 -0.5 

4 -0.50029 -0.50002 -0.5 -0.5 

4.5 -0.50025 -0.50003 -0.5 -0.5 

5 -0.50031 -0.50003 -0.5 -0.5 

     

 

Table 8.9: Solutions of equation Case (ii) and Leapfrog method for x1 

T = 100 = 101 = 102 = 103 

0 1 1 1 1 

0.5 1.7702536 1.5279384 1.50281 1.500281 

1 3.2272538 2.1237375 2.012484 2.001255 

1.5 5.7439054 2.8061257 2.530888 2.503093 

2 9.9676389 3.5952898 3.059891 3.005599 

2.5 16.981142 4.5135187 3.601371 3.510154 

3 28.578028 5.5858293 4.15721 4.015746 

3.5 47.720726 6.8407866 4.729303 4.522964 

4 79.296951 8.3112018 5.319559 5.031993 

4.5 131.36757 10.035072 5.929907 5.543022 

5 217.22435 12.056558 6.562268 6.056237 

     

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 1.500028 1.5000035 1.5 1.5 

1 2.000125 2.0000122 2 2 

1.5 2.500319 2.5000317 2.5 2.5 

2 3.000699 3.0000649 3 3 

2.5 3.501016 3.5001018 3.5 3.5 

3 4.001575 4.0001572 4 4 

3.5 4.502297 4.5002298 4.50001 4.50001 

4 5.003299 5.0003189 5.00002 5.00002 

4.5 5.504303 5.5000427 5.50003 5.50003 

5 6.005626 6.0005599 6.00004 6.00004 

     

 

Table 8.10: Solutions of equation Case (ii) and Leapfrog method for x2 

t = 100 = 101 = 102 = 103 

0 1 1 1 1 

0.5 1.0692324 0.5588483 0.505932 0.5005946 

1 1.9056584 0.6333587 0.513728 0.5013750 
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1.5 3.2329445 0.7322594 0.523392 0.5023438 

2 5.3905289 0.8497732 0.534929 0.5034992 

2.5 8.9280521 0.9908322 0.548344 0.5048437 

3 14.747292 1.1585519 0.563649 0.5063731 

3.5 24.332659 1.3568148 0.580855 0.5080929 

4 40.130196 1.5903316 0.599979 0.5099982 

4.5 66.171783 1.8647593 0.621044 0.5120917 

5 109.10431 2.1867828 0.644074 0.5143724 

     

t = 104 = 105 = 106 = 107 

0 1 1 1 1 

0.5 0.500059 0.5000066 0.5 0.5 

1 0.500138 0.5000141 0.5 0.5 

1.5 0.500234 0.5000234 0.5 0.5 

2 0.500356 0.5000355 0.5 0.5 

2.5 0.500484 0.5000491 0.5 0.5 

 

Table 8.11: Solutions of equation Case (iii) and Leapfrog method for x1 and x2 

 

t X1 X2 

0 1 1 

0.5 1.428211 -0.384 

1 1.791537 -0.346 

1.5 2.127465 -0.3268 

2 2.447541 -0.3053 

2.5 2.757087 -0.3053 

3 3.059052 -0.2863 

3.5 3.355264 -0.2937 

4 3.646944 -0.2863 

4.5 3.934948 -0.2863 

5 4.219906 -0.2831 

 

Table 8.12: Solutions of equation Case (iv) and Leapfrog method for x1 and x2 

t X1 X2 

0 1 1 

0.5 1.42729 0.479521 

1 1.96175 0.467443 

1.5 2.42493 0.459403 

2 2.88131 0.453635 

2.5 3.33267 0.449281 

3 3.78018 0.445871 

3.5 4.22463 0.445871 

4 4.66659 0.440865 

4.5 5.10648 0.438962 

5 5.54461 0.437346 
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